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https://www.esig.energy/wp-content/uploads/2021/08/ESIG-Redefining-Resource-Adequacy-2021.pdf
https://www.esig.energy/download/ensuring-not-only-clean-energy-but-reliability-the-intersection-of-resource-adequacy-and-public-policy/?wpdmdl=8286&refresh=617afb7c7b4061635449724
https://www.esig.energy/five-principles-of-resource-adequacy-for-modern-power-systems/
https://www.esig.energy/event/webinar-redefining-resource-adequacy-for-modern-power-systems/
https://www.esig.energy/resources/redefining-resource-adequacy-for-modern-power-systems-derek-stenclik-november-2021/
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* Energy and Environmental Economics, Inc. (E3), Resource Adequacy in the Desert Southwest, February 2022,
https://www.ethree.com/wp-content/uploads/2022/02/E3 SW Resource Adequacy Final Report FINAL.pdf

* Energy Systems Integration Group (ESIG), Multi-Value Transmission Planning for a Clean Energy Future, June 2022,
https://www.esig.energy/multi-value-transmission-planning-report/

* Electric Power Research Institute (EPRI), Resource Adequacy for a Decarbonized Future, ongoing,
https://www.epri.com/resource-adequacy

* Mid-Continent Independent System Operator (MISO), 2021 Regional Resource Assessment (RRA),
https://cdn.misoenerqgy.orq/2021%20Regional%20Resource%20Assessment%20Report606397.pdf

* European Network of Transmission System Operators for Electricity (ENTSO-E), 2021 European Resource Adequacy
Assessment (ERAA), https://www.entsoe.eu/outlooks/eraa/2021

* GridLab, Advancing resource adequacy analysis with the GridPath RA Toolkit: A case study of the Western US, October
2022, https://gridlab.org/GridPathRAToolkit/

* GridLab, Reliability reaching California’s clean electricity targets: Stress testing an accelerated 2030 clean portfolio, 2022,
https://gridlab.org/california-2030-study/

* Astrapé Consulting, Accrediting Resource Adequacy Value to Thermal Generation, March 2022,
https://info.aee.net/hubfs/Accrediting%20Resource%20Adequacy%20Value%20to%20Thermal%20Generation-1.pdf

* Murphy, S., Sowell, F., Apt, J., A time-dependent model of generator failures and recoveries captures correlated events and
quantifies temperature dependence, Applied Energy, 253 (2019),
https://www.sciencedirect.com/science/article/pii/S0306261919311870?via%3Dihub#f0005
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Recap from last year
Six principles of resource adequacy for modern power systems

N\
@ Chronological operations must be modeled across many weather years

@ Quantifying size, frequency, duration, and timing of capacity shortfalls is critical to finding the right resource solutions
\

Neighboring grids and transmission are a key part of the RA challenge

There is no such thing as perfect capacity.

I
[
@ Load participation fundamentally changes the resource adequacy construct.

@ Reliability criterion should not be arbitrary, but transparent and economic.
/
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Chronological operations must be modeled across many weather years
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Resource transition is highlighting the importance of multi-
vear, correlated, interconnection-wide weather datasets
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Source: GridLab, 2022,
Advancing resource adequacy analysis with the GridPath RA Toolkit
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https://gridlab.org/GridPathRAToolkit/

Best-practice in Europe... Pan-European climatological dataset
across 35 weather years
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European Resource Adequacy Assessment
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ESIG Task Force: new opportunity in North America — develop a consistent multi-weather year, continental dataset
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https://www.entsoe.eu/outlooks/eraa/2021/eraa-downloads/

Peak Load by weather year (Summer, Winter)
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Covers existing and potential future generators
Includes icing and cold weather impacts

renewable output and load response
stresses the model in ways that
e 40-year wind & solar dataset

ERCOT Case Study
Correlated weather impacts on
expected profiles would not

* 40-year load dataset

High renewable system quantifies
shifting risk to winter periods and
different years of this historical record

summer & winter
10/21/2022
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Higher than summer winter peak

Telos Energy, forthcoming

Resource Adequacy for a Decarbonized Future

’

Higher than normal winter peak

Source: EPRI

ENERGY
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https://www.epri.com/resource-adequacy

Quantifying size, frequency, duration, and timing of capacity shortfalls is critical to finding the right resource solutions
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Characterizing
Risk in MISO

Seasonal assessment of
LOLP by hour of day

Also incorporating what
the wind, solar, and
storage resources are
performing during LOLP
conditions
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When are eve ntS Relative Loss of Load Risk by Hour of Day
occurring?

2025 IRP
) 2033 IRP
As the resource mix »
ChangeS’ risk W|” Shlft i 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
diurnally and seasonally Hour of ay
Hour of the Day
1| 23lalsl{el72[8[9]10faaf12]13)/21a]25]16/27]18]19]20]21]22]23]24
In many parts of the U.S. this will ’:,',
be into the later evenings and :‘;‘
eventually into the winter season May
Jun
Jul - -
Aug | =-
Sep
Oct
Nov
Dec

Source: E3, 2022,

Resource Adequacy in the Desert Southwest

& T EL OS ENERGY www.telos.energy 10/21/2022 12



https://www.ethree.com/wp-content/uploads/2022/02/E3_SW_Resource_Adequacy_Final_Report_FINAL.pdf

Characterizing event size is necessary to properly
Size mitigations

EVENTS PER YEAR

@ T
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EVENT DURATION DISTRIBUTION
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Source: GridLab, 2022,
Advancing resource adequacy analysis with the GridPath RA Toolkit
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EXPECTED DAYS OF LOST LOAD IN 10 YEARS
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https://gridlab.org/GridPathRAToolkit/

Characterizing individual events for further insights help

understand risks and potential mitigations
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https://www.epri.com/resource-adequacy

Neighboring grids and transmission are a key part of the RA challenge
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Resource adequacy studies should span large geographies to capture
benefits of load and renewable diversity
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https://www.entsoe.eu/outlooks/eraa/2021/eraa-downloads/

There’s large opportunities for capacity sharing,
but this requires new regulatory frameworks

(
while this analysis presents a view of the level of reliability that might
be achieved across the region, each utility remains responsible for

planning a portfolio of resources to meet the reliability needs of its own
aPs @ customers’ loads. In the absence of a formalized protocol for sharing
of capacity resources among entities within the Southwest, utilities

GRMA S8 plan for the resource adequacy of their own systems in a way that may

not harvest the full physical load and resource diversity of the region.”

HGMA

2025 IRP Portfolios Risks of dependence on neighboring regions How can the
Metric BseCase  Sumport * Development risk in neighboring regions o P°“Clv&
LOLE (days/yr) 0.04 0 * Operational risks of energy-limited resources ;fag,::x:'k
LOLH (hrs/yr) | o007 0  |nstitutional risks ] overcome these?
Normalized EUE (ppm) 0.34 0
Effective Capacity Surplus (Shortfall) (MW) 760 2,139 Source: E3, 2022,

Resource Adequacy in the Desert Southwest
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https://www.ethree.com/wp-content/uploads/2022/02/E3_SW_Resource_Adequacy_Final_Report_FINAL.pdf

Interregional coordination and transmission can be a
capacity resource, but only if we evaluate it

Loss of load hours per year for the WRAP subarea in the Less Coal Scenario when (a) the subarea is PSEI ST p—
modeled as an island and (b) the subarea has access to imports. SCL,
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Source: GridLab, 2022,
Advancing resource adequacy analysis with the GridPath RA Toolkit CAISO Sub-Area
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https://gridlab.org/GridPathRAToolkit/

How can we
disaggregate
reliance on
Imports?

GridLab California study
evaluated the
interrelationship between
economic (non-dedicated)
imports and in-state gas
availability to better
capture reliance on
imports

@TELOS ENERGY

' AVAILABLE CA GAS

MW
=

ECONOMIC IMPORTS

&= CA GAS

CA GAS MARGIN

0 o o o o

JAN 2030 MAR 2030 MAY 2030 JUL 2030 SEP 2030 NOV 2030

www.telos.energy 10/21/2022 19



Evaluating capacity contributions e
of new transmission

0.40
With additional Southern retirements, the LOLE risk by month, 2030
connected system sees RA benefits at both ends of 0.35 NoOV
the HVDC line without adding any new resources = Oct

. . . . 0.30 Bl
Interregional transmission accesses load diversity and Sep
renewable resource diversity < 025 AUg
Improves ERCOT resource adequacy and enables % Jul
deferral of new gas capacity and additional coal o 020 mJun
retirements in southeastern US O 015 = May
Intereregional transmission can have a . m Apr
200% Capacity Credit 0.10 il - = Mar
a 2 GW line can improve resource adequacy similar to mFeb
4 GW of new natural gas capacity 0.05 m Jan
[2 GW in ERCOT + 2 GW in Southern Company]
_ — B Dec
ERCOT ERCOT SOCO SOCO
Only Combined Only* Combined
& TELOS ENERGY www.telos.energy 10/21/2022 20



There is no such thing as perfect capacity.
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Capacity Accreditation for All

120% 120%

UCAP accreditation may not be a good proxy Winter Accreditation Summer Accreditation
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Weather Dependent Outages
Weather Dependent Outages

Data Source: Astrape, 2022 (Chart by Telos Energy)

Accrediting Resource Adequacy Value to Thermal Generation
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https://info.aee.net/hubfs/Accrediting%20Resource%20Adequacy%20Value%20to%20Thermal%20Generation-1.pdf

We need more granular forced outage data

To capture weather dependencies by generating units

GADS+ could include . CT (8% of capacity) NU (18% of capacity)
v
anonymized: > " ® Median
. . S 3 h '
 Daily outage rates by unit S21e 8 8- i
. 3 s @
* Locational outage rates (by 5 % .
weather zone) 8 s .
. . c @
* Long historical record to s*t1 ¢ s 2
include outlier weather . o E »
it 8 Lol = §7 ;
conditions & [------ al ik mh ok s aimiiniel I QR SRR WL, SIS
* Simulated performance 11— ; . . l ol , : . :
10 0 10 20 30 -10 0 10 20 30

during weather events Temperature (°C) Temperature (°C)
* Control equipment
. . . Source: Murphy, S., et al, 2022
(Weather|zat|0n, Ch I | |ersl A time-dependent model of generator failures and recoveries

etC ) captures correlated events and guantifies temperature
. dependence
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https://www.sciencedirect.com/science/article/pii/S0306261919311870?via%3Dihub#f0005

Evaluating system risk with weather dependent outages
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*note: ERCOT does not see an increase in
average forced outage rates in the summer,

but that may be due to faster repair times
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https://www.epri.com/resource-adequacy

What comes next?

There’s more work to be done, especially to evaluate load flexibility and
to establish the reliability criteria for the future

Load participation fundamentally changes the resource adequacy construct.

Reliability criterion should not be arbitrary, but transparent and economic.
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Thank You!

Questions?

Derek Stenclik
derek.stenclik@telos.energy
Telos Energy
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